Kaliq Mansor/Calen Uhlig
ECE 479 Winter 2010

Dr. Marek Perkowski

March 17, 2010

Video and Image Processing with Simulink

Introduction

The purpose of this project is to explore the concepts of computer vision as they apply to robotics. Specifically, this individual project explores the video and image processing tools available in MATLAB® and Simulink®. The task assigned was to integrate a camera system into a mobile robot, and program the robot to use the cameras for navigation and target detection and tracking. For the purposes of this project the target detection and tracking solution was used to explore the MATLAB and Simulink tools.
Background

MATLAB is a numerical computing environment developed by The MathWorks, Inc., a privately owned company based in Natick, Massachusetts. The name MATLAB stands for “Matrix Laboratory”, as it was first used to replace Fortran-based linear algebra programs. Since it’s inception in the 1970s, MATLAB first gained popularity with control system engineers and is currently used extensively for image processing.

Simulink is a modeling, simulating and analysis tool for dynamic systems also developed by The MathWorks, Inc. Simulink has a graphical block diagramming interface and a set of block libraries that allow the user to graphically program the systems they wish to explore. When purchased on a standard commercial license, Simulink must be purchased in addition to MATLAB. When purchased on an educational license, Simulink is included with the MATLAB package.

The ultimate task for this project was to allow the robot to navigate a maze, detect a second robot and interact with the second robot. Because of this goal, several decisions were made in the development of the project. The operating conditions and environment of the robot will not be as controlled as the files used in the development. This fact was kept in mind, and explorations in selecting very specific shapes and color were avoided to prevent making a program too specific.
Simple Image Processing

To begin exploring Video and Image Processing with Simulink, a simple image processing algorithm was developed to perform edge detection on a single static image. Figure 1 shows the Simulink block diagram which opens an existing image file, converts the RGB image to an “Intensity-only” image (Black and White), and performs four different edge detection algorithms on the B/W image. Using the Video Viewer block, the results of each algorithm is displayed on the screen individually.

The original file opened as well as the results of each edge detection algorithm is shown in Figure 2. From right-to-left, top-to-bottom the four algorithms are: Roberts, Sobel, Prewitt and Canny. It is easy to see that the Roberts, Sobel and Prewitt algorithms give a relatively good representation of the edges present in the image’s foreground. The Canny algorithm required an adjustment of parameters in order to achieve better edge detection performance.

[image: image18.png]

Figure 1: Simple Image Processing Block Diagram

[image: image1]
Figure 2: Original Image and Four Separate Edge Detection Algorithms

Advanced Image Processing

The ultimate goal was to attempt to use MATLAB to aid in computer vision; and edge detection seems to be the preferred method of object and obstacle detection. However, Simulink offers considerably more functionality than just edge detection. Adjustment of the parameters within the different blocks allows for an expansion of functionality and increased performance.
Another Simulink block diagram was constructed to allow an exploration of the parameters for the Canny edge detection block. Figure 3 shows the resulting block diagram that was used for this exploration. Figure 4 shows the parameter adjustment that can be opened by clicking the appropriate block in the Simulink file.

[image: image2.png]File Edit View Simulation Format Tools Help
DSH&| 4@ [p =f00 [Noma CBeRes: hEES®

Tmage From File . Color Space

Ready [100% [|odeds

Figure 3: Canny Edge Detection Block Diagram
[image: image3.png]File Edit View Simulation Format Tools Help

MECERET R R

BB

S hEE®

vees
e
S
vees
e
Vv
cose [\
e reee e i
e e
T

(o

Edge Detecton

Finds the edges n an input image using Sobel, Preuitt, Roberts, or Canny.
methods.

The block outputs a binary image, a matix of Boolean values, where pixel vaues
equal to 1 correspond to edges. Alteratively, the block can output two gradient
components of the image for the firs three methods.

man | Fixed-point

Parameters

vethod: (camy =)

Standerd deviation of Gaussian fiter: 1

o J et J[b][20 |

100%

Figure 4: Canny Algorithm Parameters
Figure 5 demonstrates the effects of adjusting the threshold values for the Canny algorithm. The particular threshold value for the image is [0.05 0.15], which indicates the [low high] values for the Canny algorithm’s threshold.
[image: image4.png]

Figure 5: Canny Edge Detection (Adjusted)

In addition to edge detection, Simulink offers many other image processing tools, such as filters. To further improve the Canny edge detection process, a median filter was used to remove some of the high-frequency detail in the image. Figure 6 shows the block diagram, Figure 7 shows the effects of the Median filter and Figure 8 shows the effects of the filter on the Canny algorithm. It can be seen that considerably more detail is removed from the processed image and better edge detection is achieved.
[image: image5.png]File Edit View Smultion Format Tools Help
D @W& R (e 42> =00 [Nomad CEsRbe s REBEES®

Video
™0 Viewer
Crginal
Video
™0 Viewer
Video Viewsr
ReE© Wedian Video
websliee Imese intensity e I cenny Edge limage [0
image From File Color Space Tedion Fiter ey
Conversion Cany

[100% [[odeds.

Figure 6: Canny Edge Detection with Median Filter

[image: image6.jpg]

Figure 7: Median Filter Effects
[image: image7.jpg]&
gl

Figure 8: Canny Edge Detection with Filtering

Video Processing

Since the purpose of the project is to incorporate computer vision into a robot, the next logical step was to explore the video processing tools available in Simulink. Since video is nothing more than a series of streamed images, video processing is similar to image processing. Simulink offers video processing on both recorded and live video inputs. Also, real-time processing is available that will aid in object tracking and robot navigation.

An approach similar to image processing was used for video processing. Starting simply, the first step taken was to perform the Canny edge detection algorithm to a video file. The file
 is opened and converted to Black and White (Intensity), the data must then be cast as another data type (single) for the Canny block to process. Once finished, the output of each block is displayed in a “video viewer” window. The video is display real-time: as each frame is processed it is displayed in the video viewer. Figure 9 shows the block diagram for this first step in video processing.

[image: image8.png]File Edit View Simulation Format Tools Help

DSH&| L@ 4[] r 5o [Nom CBeRes: hEES®

Video Video
™59 Viewer ™29% iever
Video Viewer2 Video Viewez

Ballavi ReE© Convertimage

Ve 2606320, 260 425 [¥ insensity * losingle Canny Edge|
From Wlimadia File Color Space image Data Type, Esge Detection Y
Conversion Conversiont s

[100% [[odeds.

Figure 9: Video Edge Detection

The video resulting from this first, simple block diagram shows that a considerable amount of noise is present in the processed video, resulting in poor edge detection performance. An autothreshold block was used to adjust the threshold of the video frame eliminate the background data that would be negligible for the process of detecting the bouncing ball in the video. Figure 10 shows the block diagram that includes the use of an autothreshold block.

[image: image9.png]W AutoThreshCan:

File Edit View Simulation Format Tools Help

DSH&| L@ 4[] r 5o [Nom CBeRes: hEES®

Video Video
image %2 jmage /922 -
Original image. Biscsna winite e
Ballavi ReE© Convertimage Video
R . S g R e—— ot Bl Conny Edge|—b{image 9%
From Nulimadis File Color Space Avtotrvesnala image Data Type, Esge Detection
Conversion Conversiont cany

[100% [[odeds.

Figure 10: Edge Detection with Autothreshold

It can be seen that the addition of the autothreshold block greatly improved the performance of the edge detection algorithm. However, the program still struggled with selecting the ball from the horizontal surface. This was because the edge detection algorithm was selecting edges based on intensity and not color. To move forward, several directions were available to detect the foreground object: Color Filtering, Background Estimation, and Motion Detection.
Object Tracking

In the particular video shown, the orange ball could be easily processed to ignore any other colors in the video for tracking. However, the resulting program could only be used for this particular situation. Motion detection and Background Estimation seemed to be the most promising of directions.

Simulink provides a Background Estimation block that will average all previous frames (this is adjustable) and will subtract the resulting average from each processed real-time frame. The resulting image is considered in an edge/blob detection algorithm in order to detect moving objects. Each blob is given edge points, which are used to draw a box around each blob in order to provide object tracking. Figure 11 shows the tracking block diagram.
[image: image10.png]File Edit View Simulation Format Tools Help

DEHgsa@ o [Nomal EEEEEE -1
Tracking Using Background Estima! onI
R
G background avi
B
To Muttimedia File
Background R —
To Video
Display Image NOT [BGflag
BBox
Ball_160.avi RGB'to " 8e
V: 120x160, 25. intensity Vaia| < vaid]
Back ind Estimat Count
ackground Estimator
From Multimedia File Color Space
Conversion
Segmented
Car Tracker
Video In
|)
Display Results
Image original avi
To Muttimedia File1
Ready 1156% FixedStepDiscrete

Figure 11: Video Tracking

Adjusting the parameters can be done through each block individually, but several parameters that are applied to algorithms deep within the blocks’ hierarchy are available through the yellow “Edit Parameters” block. The parameters easily adjustable are minimum object size, maximum object size and background estimation method. Three methods of background estimation are available: median estimation, median computation and moving object removal. Estimating the median provided the best performance, as computer resources were used heavily for the other two options. For the purposes of demonstration, the individual video outputs were saved directly to a file rather than displaying them real-time.

Real-Time Object Tracking

For this project, the robot should be able to detect and track an object using live video. A video stream is fed to the program from a webcam, and the software should be able to differentiate and track a foreground object as it moves through the scene. Moving from a recorded video file to a live video stream was relatively straight forward; the video source is changed from a Multimedia file to the webcam (or other video source). In a Windows system, MATLAB and Simulink will already know if the webcam is attached to the computer and will allow its selection. If multiple devices are attached, the user can select the desired video source.

The resulting program performed well in the initial setting; tracking a person walking around a dimly-lit room with a cluttered background. For the purpose of demonstration, the room was darkened and an LED flashlight was used as a target object.
 The performance of the program in this setting was surprisingly good, very little lag was detected and the object was effectively tracked as long as it was within the specified minimum and maximum size parameters. While watching the recorded video, the effects of the target’s size are easily apparent. When the target’s size becomes too large or too small, it is ignored. The program reacquires the target once its size is within the desired range. This is an important point to note, as the development of a system able to discriminate between specific targets will be a future goal for this project.
Future Development

The object tracking system currently only draws boxes around the object it has identified. The box data is calculated on the size of the blob detected in the Simulink program. This data could be used to determine the center mass of the blob. Using a fixed reference point in each video frame, an error vector could be used to “steer” the robot in a manner to center the tracked object. Figure 12 give a graphical representation of this process. A dampened control system tuned to the mechanics of the robot would need to be developed in order to provide a smoother tracking function.

[image: image11.jpg]1
Tracked Object (Center

Mass indicated by X)

Video Frame Center
)

L4

= the number of data points that represent the tracked object, o just
the data points of the object's edge.

CoM{y) The Coordinates for the abject’s Center of Mass is (CoM(x), CoM (1)

The Error Vector can be found by Subtracting the Video Frame Center
(') from the object’s Center of Mass (CoM(x), CoM{y)).

IS

Error Vector

Figure 12: Error Vector Generation
Another area for development is in generating a set of adaptive parameters. This would allow the robot to “learn” the object it should be interested in tracking, allowing the software to adjust the parameters to optimize tracking given a variety of environments.

Real-Time Pattern Matching

In addition to being able to detect and track motion in its vicinity, it is desirable for the robot to be able to identify or categorize the object it is tracking. Once the identity of the object is known, the robot could then choose the most appropriate of its available behaviors to suit the situation. In the case of robot social demonstrations such as the Little Robot Theatre, a robot with such a system could say different things to different robots, chase or hide from different robots, and so on, all based on visual recognition of which individual robot it randomly encountered.

A primary method of attaining this functionality is known as visual pattern matching. The essence of the technique is to start with a sample of the pattern being sought – an image of a robot, for example – and then cross-correlate this data with frames of the incoming video stream. Areas of higher correlation indicate a higher degree of certainty or a match in that local region. The certainty rating obtained can then be compared to a predefined minimum threshold value to make a binary decision whether or not the pattern sample was found in the image.

Simulink includes such a system in its libraries. This system is intended to be used as a demo of Simulink’s capabilities, but could be modified by the user to more flexibly work with different input sources, instead of the given AVI file and sample pattern image. This system is shown in its default configuration below.

[image: image12.png]vipy

File Edit View Simulation Format Tools Help

DEES| s BR[Ed[2x|n o e @@

L‘(v y

|
WSamrie T
Enable. \:o vipboard avi Mt
Vzeomaso. 1 plimsge ncerTest 0 oo ————pf M
0%
From Wlimedi Fie o
et i et | 7]
=y
et
Couslesi
o seletnew frge)
->M Target RO frmmp 7521 ROI
Trveshola
] wr
Method gt aetection and tracing. Highlight the target
20272
Frameraie
Dopiey
Running 100% B (7705 [FoedstepDiscrete

Figure 13: Pattern Matching Block Diagram

The above image shows the top-level view of the pattern matching system. The large block in the center is the primary processing block. Visible on the left side of this block are the input data sources Target and vipboard.avi, which serve as the pattern sample and the image under test (IUT). Also on the left side is the Correlation Method selector, which allows the model to be directed to use correlation in either the frequency or spatial domains. On the right are the various user outputs. In this model, we have a graphical display of the cross-correlation strength, a histogram displaying the threshold value versus the current degree(s) of certainty (multiple values for multiple possible matches), and finally a copy of the input video stream with the locations of the matched patterns highlighted with green boxes. The content of these outputs is shown below.

[image: image13.png]1

09%
0%

0985
0%
0975

097,
0

Time offset: 10

Figure 14: Simulink Pattern Matching Outputs
On the left we have the correlation data display. Brighter colors represent areas of higher correlation, or a more likely match. In the middle is the match strength histogram, which shows the match strength over time. The match threshold is displayed as a horizontal blue line, along with the match strength of each target being sought. In this case, the system is looking for two matches, so there are two histogram lines. On the right is the original video stream with the match locations overlaid. In this case, the pattern sample was of one of the two identical large ICs, which are shown with green squares drawn around them in the output video.

Now that we have seen an overview of the pattern matching system and the types of data it might present to the user, let’s have a look under the hood of the main processing block and see how this data is generated.

[image: image14.png]File Edit View Simulation Format Tools Help

DsHd& + ft [Nomal - B ke REE®

Image Under Test (UT)

FixedStepDiscrete

Figure 15: Main Processing Block

This block looks complicated, but can actually be explained without too much difficulty. Starting from the left side, the IUT comes in and passes through the Gaussian Pyramid block. This block essentially reduces the IUT into a smaller version of itself, and is employed here as a means of trading processing speed for match accuracy. The pyramiding factor can vary from 1 to 5 (default 2), with higher values resulting in smaller images. These smaller images take less time to process (fewer pixels), but pyramiding values which are too high can cause matching to be inaccurate due to information loss in the IUT.

Once the IUT has passed the Gaussian Pyramid block, it is fed into both the Frequency and Spatial blocks, which perform frequency- and spatial-domain cross-correlation, respectively. Only one of these blocks is executed, as governed by the Method input from the top-level model. The correlation blocks are fed together into a Merge block; this serves simply to automatically catch the correlation data from whichever block actually executed. From the Merge block, the IUT is fed into the Locate Target block.

[image: image15.png]File Edit View Simulation Format Tools Help
DSH&| &8 + ft [Nomal - BB e

Find Tosston of e best matan
between the target and IUT,
compensste fo pyramiding

) »|

x| —]
o linear ndex

QR
R =

Find Local laxima Terminator

FixedstepDiscrete

Figure 16: Locate Target Block
The Locate Target block examines the cross-correlation data for local maximums and generates a set of ROIs (regions of interest), which are passed out of the main processing block and into the Highlight the Target block on the top-level model. In addition, the Locate Target block generates the data displayed on the Match Metric window (histogram).

[image: image16.png]vippater/Hi

File Edit View Simulation Format Tools Help

DEES| DR[| > [

image
Video
| Recongles [{imege 057
Oueray ine ROI
on the target

[FredStepDiscrete

Figure 17: Highlighting Target Block

This block performs the task of overlaying the green squares onto the original video stream to mark the locations of matched patterns. It’s actually quite simple; the IUT comes in and is converted to RGB and sent to the Draw Rectangles box, which also receives the corner points of the ROIs from the Locate Target block. Draw Rectangles does just what it sounds like, and then the composite image is displayed to the user. This particular output might be considered the most important to a human observer since it is most similar to how we would naturally think of such a match, although to the robot the most important data is probably the coordinates of the ROIs, since these are what tell it where the match is located, once it’s know that a match exists.

Viability of Simulink as Vision System Development Platform

This system was developed by experienced Simulink programmers and is streamlined and elegant, but it also isn’t so complicated that it can’t be understood with a little foreknowledge of the principles of the application at hand (that is, of pattern matching or motion detection in general). In fact, the graphical nature of Simulink suggests that such a system could be built from scratch in a very short time, probably a couple of hours. Add in the code-export and standalone-application export capabilities, and Simulink begins to seem very attractive as a tool for realizing complex and powerful robot vision systems.

Project Integration and Obstacles

The object tracking system that was developed using MATLAB and Simulink seemed to have better performance (in speed) than the OpenCV based systems used by other members of the group. However, MATLAB and Simulink are optimized for a Windows environment, which made integration into the project prohibitive. Towards the end of the term, a decision was made to utilize the OpenCV based systems for the project. Several other components of this project were already using OpenCV. This decision was based on the relative ease in integrating the OpenCV systems, where time could be spent optimizing with OpenCV rather than attempting to integrate the MATLAB system.
RGB to B/W

Edge Detection Algorithms

RGB to B/W

Input Image

Image Viewers

� For this section refer to the Simulink file SimpleImage.mdl

� For this section refer to the Simulink files CannyRugby.mdl and CannyRugbyFilter.mdl

� For this section refer to the Simulink files CannyNoThresh.mdl and AutoThreshCanny.mdl

� See the video file ball_160.avi

� See the video file canny.wmv for the resulting video.

� See the video file AutoThreshCanny.wmv

� For this section refer to the Simulink file viptraffic_win.mdl

� See the video file tracking.wmv for the resulting video.

� See the video file LiveTracking.wmv for the resulting video.

PAGE
Mansor Uhlig 18

[image: image17.png]Simplelmage

File Edit View Simulation Format Tools Help

MECEIE L e R el

S hEE®

Video

™8 Viewer
Crginal
Sobel Edge
Esge Detection -
Preuitt Edgel
‘Eoge Deteciont o
ReE©
rgbytipg Imsgel
intensity Video
Robers Edge Viswar
image From File Color Space
Conversion Eoge Detecionz
Video
Genny Edee| Viswar
‘Eoge Detecions r_w

[100%

